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IN VERSE SCATTERING THEORY AND

PROFILE RECONSTRUCTION ’

I Intr.OctI.n

The customary procedure for constructing a theory for an electromagnetic scattering

phenomenon is first to assume some specific model for the scattering object and then to calcu-

late the resultant scattered fields. This procedure is known as direct scattering theory. The scat-

tered fields thus predicted are compared with the experimental scattering data and the specific

model is altered until theory and experiment agree according to some acceptable criterion.

A different approach is to assume only the general physical properties of the sca t tering

object and then to determine analytically the specific model using only the knowledge of the

incident fields and the scattering data. This procedure inverts the customary analysis of the

cause-and-e ffect relationship and so is known as ,nw ’rss scattering theory , This general problem

can be simplified if the scattering object is assumed to be an inhomogeneous region, whose

index of refraction has only a one-dimensional spatial variation. This procedure is known as

p rof ik reconstruction.

As with direct theory, various approximate methods have been us:d to solve inverse

scattering problems, for example the physical-optics approximation 1
~ and linearization

methodst
~. Several inverse scattering theories have been discussed in recent surveys.’ ~~‘
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Numerical solution to the time-domain integral equation for this problem has also been con-

sidered.4 In the present communication we discuss an inverse scattering theory that may be

called exact in the sense that it reconstructs refractive index profiles exactly starting from an

analytic expression for the reflection coefficient.

The general physical model which we consider is the scattering of electromagnetic waves

from a strati fied ionized region, as shown in Figure 1; this model has been used to study ionos-

pheric radio wave propagation.~ The effects of electron collisions and static magnetic fields

have been neglected so that the relative permittivity of the inhomogeneous region is

€ ( k ,x) — l — - - - ~- q (x ) . x~~ 0 (1)
a ,, k

where a.,, permittiv ity of free space and k — Cu/C , the wave number in free space, and where oi

— radian frequency end c — velocity of light. The profile function, q(x) , is proportional to the

electron density.

The time-harmonic amplitude, us,sc.x) , of the horizontally polarized electromagnetic field

E— â,,E, satisfies the differential equation in the variable x

u (s ,x) + (sc
2 — q (x ) J u (sc . x )  — 0 . (2)

where the spectral variable is the wavenumber in the x-direction, ‘c — kcosO, u(sc .x) is the

Fourier transform of E,.( ci ,x) , and t — time variables. The case of a vertically polarized field

will be discussed in Section 3.4.

The profile function q(x) in Eq. (2) will be assumed to be real, bounded, and piecewise

continuous in 0 ~ x <co with q(x) 0 for x < 0, Thus ii is possible to obtain a solution of

Eq. (2) which satisfies the asymptotic conditions

r( K)e ” ° ’  + e °’. x——co ,
u(sc.x) — 

T(sc) e °’ . x—-i- oo .

2 
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The reflection coefficient, r(sc ), and transmission coefficient , flK), are assumed to be

represented by analytic functions of K in the complex K-plane. From the conservation of

energy,

Ir (sc)12+IT(ic)I2 — 1. (5)
where

I r(K) 12
_ r(K)~r (K) — r ( K) ~r ( ’ K).

I T(,c) 12 — T(K)~ T~Y— T(,c)’ T(— K)

for real K , and where iT~T means complex conjugate of r(,d.

The inverse scattering problem can now be stated: Given the reflection coefficient r(ic )

as an analytic function of the wave number K, find the self-consistent profile function q(x).

( Here self-consistent means that no further information is needed to find a unique profile.) We

will direct our auenlion to the analytic relationship between the reflection coefficient and the

profile function. The problem of the appropriate data processing to obtain the reflection

coefficient r(k) warrants a separate investigation.

The profile reconstruction method which we discuss here is an application of the inverse

scattering theory for reflection coefficients which are rational functions of the wave number)’

This theory was developed from the solution to the inverse Sturm-Liouville problem.’ The

theory has also found applications in quantum scatteringS S  and non-linear wave propagation. ~

We will demonstrate the profile-reconstruction procedure by using a third-order rational

approximat ion’ to r(aO . The frequency variation of the reflection coefficient and the form of

the reconstructed profile resemble those that have previously been analyzed in connection with

the solution to the direct ionospheric scattering problem. ’ In addition two more examples will

be analyzed: r ( K)  has three poles, one of which represents a “bound state” which leads to a

negative profile, and r( .c) has two poles and one zero, which leads to an oscillatory profile.

3
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JORDAN AND *1*4

These three examples and iwo previously published examples will be compared in order to

illustrate the relationships between the general forms of q (x) and the pole configurations of

r (K).

2 Inverse Scaftering Problem

The time-harmonic wave amplitude in the free-space region is

u~(ic . x) — e~~
r + r(sc )e ’”’ , x ) 0 (6)

where only the dependence on the x spatial coordinate is shown. The corresponding time-

dependent electric field is

E,~
(x. c )  — 6(x — ci) + R (x  + ci) .  x ~ 0. (7)

where 8 (x—c: ) — incident 8-function impulse, and R (x + ci)  — reflected transient.

The time-dependent field in the inhomogeneous region satisfies the differential equation

.1.. 
~ 

— q(x)E , — 0, x ) 0. (8)

The retarded electric field can be represented in terms of the electric field defined by Eq. (7)

with the transformation””
~~(x.c,) — E,.,, (x. ci ) +f K(x,~~)E,, (~ ,ct) d~ . ( 9)

where the function K(x . ~
) also satisfies the differential equation (8) with the boundary condi-

tions

K (x . —x ) - — 0 .  (10)

dA ’(x. x)  I
— — q ( x ) .  ( I I )

4 
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For a wave moving toward the right , t he retarded field satisfies the condition

E,(~~. :)  — 0 .  c < 
~ 

(12)
so that equation (9) together with equation (7) provides the integral equation

R (x + ci ) + K ( ~~
z ) + ~~~ ~) R + ~ t) J ~ — 0 .  (13)

If th is equation can be solved for ~~~ ~
) , then Eq. (II) gives the solution to the inverse

scattering problem.

The integral equation (13) can be solved ’ exactly when ‘(K) is a rational function of K,

considered as a complex variable. ln this case the reflected field is

R ( ~ +,-:) — 
~~~~~ 

“ 
~‘d~ 

~~~~~~ 

r,
~ 

“ (14)

where the integral represents the continuous spectrum of r(K)  and the discrete spectrum is

represented by the sum over the poles, K ,. if any, on the positive imaginary axis with the resi-

dues, r. If q (x )  ~ 0, as in the present model of ionospheric scattering, then r~~ ) has no

poles on the positive imaginary axis. If the poles of r(K)  lie on the unit circle, then ‘(K)  is the

nth-order Butterwort h approximation and the integral equation (13) can be solved ” rather

easily.

The profile reconstruction method can be interpreted in terms of the space-time represen-

tation shown in Figure 2. A delta-function impulse is incident on the inhomogeneous region

and a reflected field and a transmitted field are produced. using causality conditions, the fields

in the left and right half-planes can be reconstructed. In the left half-plane the total field is the

sum of the incident and reflected fields. In .he right half-plane the field can be represented by

a linear transformation of the free-space field. Causality for the backward light cone (time-like

region) says that the reflected field is not produced until the incident field arrives at ‘~ — ci, i e

S
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R (.v + s’) — 0 for x + ci < 0. In the forward light cone (space-like region) the field is modified

only by the medium it has traversed , i.e., K (x ,ct ) — 0 for ci > x. Substitution of this

representation of the field in the original wave equation provides the boundary condition which

gives the profile function q(x ) .

3 Profile Reconsttuction

The reconstruction method can be demonstrated with a third-order rational approximation

to ‘(K l, I C .  r( K)  has three poles in the complex K-plane. The resultant profile function q(x)

resembles electron density profiles that have been analyzed by direct methods S. An alternate

method, which may be more convenient if r(K) has only a few poles, will also be demonstrated.

3.1 Three-pole Reflection CoefficIent

We consider the reflection coefficient

K ,K 2K 3r(K) — (IS)( K — s c ,) ( K — K 2) ( K — K 3)

where K~ — —
~~~ , 

— c 1 — ic~ and K 3 — —ía. The normalization has been chosen so that r (0) —
- I. Conservation of energy requires that

Ir( K) 12 ~ 1; (16)

this defines the regions for the allowed pole locations, shown in Figure 3 by the shaded portion.

The reflected energy density Ir(K) l~ is shown in Figure 4 as a function of K for the

configuration of poles shown in Figure 3; a — 1.0, c, — 0.50, c2 — 0.499. This configuration

is also shown in Figure 6.3.

The integral equation (13) can be reformulated’6 without the assumption ci < x. The

“entire” electric field,

~~ (j, , ci) — K (x , c i) + 6(x , ci) — E . (x , c i) ,  (17)

6

-
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sati fies the integral equation

R ( ~ +~~i)+ e(~~. ci) +f  ~.h. f) R  (~~+, i ) J~ 0 (IS)
m~,I ,

and has the properties

— — 
~~~~~~ 

ci) . ci ‘
~~ ~ . (19)

— 2 ~~~~~~ . ~ 0. (20)

so that equation (20) provides the solution to the profile reconstruct ion problem.

By using the complex variable s — i x , integral equation (15) is amenable to solution by a

Laplace transform technique 3 
~ which will be used in this section. The Laplace transform of

Eq. (Ii) is

.4 (s )  
~~

“ 
~ .4 (s ) FLy . — s )  + FLy . s) + G~~. ~) — 0 . (111

where

4 ( s )  r ( , s ) — f ~ R ( ~ + V e~~ J~ . (22 )

F(.v. s) — f  k ( v . ~ J ~ . (23)

G (.x. s)  — f  
~~~~~~~~ ~~) 

‘
~~ .,i~ . ( 24)

In the present example

4 (s) — 
N(s) 

— 
—a(~ (~~

)
D(s) (s + a)  ~~~ + 2 . .  + (‘1)

where C~ — c~ +c ~. In general we can write

• ,\‘( s )  — ~~~~n s ’. 0 (s)  — ~~~~~ (2b)

where the coefficients n and d are real.

Equation (21) can be written

N(s )  e ” + N (s)  Fl—s . ~
) + 0 (s)  F (s .  ,y) + 0 (s)  G(s. x) — 0. (27)

7
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However G(s . •~~) 0(s)  — g(s. x) e ’
~ ’ is an entire function ’6 and we can write, using (24) and

• since D (s )  is a third-order polynominal,

K ,, K , K 2
e t’ G(s. .y) — + —- + .—

~
- . as s— oo . (28)

S s~ S

where

K,, — K ( x . . ~
) . K , — - -~ - I 1_ ..

— 
d2 K(.v. V

‘— I
..

In general we find that

g( s. x)  — s Z d,~ + I — i K , , 2;)

where

K — ~~K(x. 0
d~’ i”

We finally obtain

F~(x.  s)
F (x . s)  — — , (30)

F~(x . s)

where

F , , (x ,  s)  — e” .\(s) g(—s, .v) — . \ ‘(s) D ( — s)  + e “.~‘( s)  V (— s)  — D ( — s)  g (s . x) .
FD (x. s)  — 0 (s)  D ( — s)  — N ( s )  .V(- - s ) .

Since F (x . s) is an entire function,,

K,, — K (.v . .~~) — u rn  IsI F (x , .c)  t’ ‘. (31)

so that q(x) can be found from Eq. (11).

In the present example

g( s .  .v) — —s 2 k,, — s y ,  — y ,,. (32)

where

8
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— K 2 + (a + 2c 2) K 1 + ( C2 + 2c 2a) K 0, (33)

~y , — K~ + (a + 2c 2) K 0.
Using (32) and (30) in (23), K(x . ~ 

is found by an inverse Laplace transform. We can then

solve for K , and K0 to obtain, after lengthy but straightforward calculation:

~~ d0e~~~
0 (— r ~ + (d 2 — K 0) r + g — d,)

K (x , 0 — 

4T 2(t 2 — 82) 
(34)

where the r’s are solutions of

(r ,~ 
— 82)2 — 8 ?  —0.  i — 1. 2. 3 . 4. (35)

T 3 f~. T 4 T i.

8 ? —  -

~

- (a 2 +4c ~
) (a ’— 4 c ~~),

— + a 2 — (c? — c ?) .

The graph of q(x) for the r(K) of Fig. 3 is shown in Figure 5 and is compared with other

examples in Figure 6.3. The complete formula for q (x) has been previously displayed;’ the

analysis leading to this formula is summarized here.

3.2 Three-pole Reflection Coefficient with One “Bound State ”

An example of a discrete as well as a continuous spectrum is furnished by a reflection

coefficient with the pole configuration shown in Figure 6.5. The symmetric poles on the unit

circle in the lower half-plane correspond to the two symmetric poles for the third-order Butter-

worth approximation, these poles represent the continuous part of the spectral function for the

differential equation (2) ; the pole on the positive imaginary axis represents the discrete part of

the spectral function:

r

Kj — I.

9
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The characteristic func tion , R (x) , is found from (14) to be

R (x) — — ~ + 1’j~ ~~~~~~~~ — 
1 

6 ~~~~~~~~~ + 4 e~, (36)

where the first two terms represent the continuous part of the spectrum and the last term

represents the discrete part of the spectrum.

We will use this example to demonstrate an alternate , but equivalent. technique ’0 ~ ~ for

solving the integral equation (13). It is possible to construct a differential operator 1(p ) ,

p —“ 
~~~~~~

, such that ,f(p) R (x) — 0. For a three-pole reflection coefficient ,

1 (p )  — p ’ + ‘(K 1 + K 2 + N~~) p~ 
-. (K , K 2 + K 1 K ;  + K 2K~)  j~ — i K ,K 2K~, (37)

so that in the present case , 1(p) — p3 — I. The differential operator is applied to equation (13)

to obtain

f( p) K(.v. .v) + K (x , —
~~~) — 0. (38)

and by symmetry

.f(—p) k (x, —y) + K(x. y) — 0. (39)

The boundary conditions on K ( .~. ~
) are

K ( v , y)  _ — 0. (40)

Klx . y)  
~

_ , — R ’(x )  I ,— o~ 
0, (41)

K (x. .v) I ,._ -~ 
— R (.v ) 

~~~~~~~ — 1. (42)

Eliminating A (x. — y )  between equations (38) and (39) yields p6 K (.v, y ) — 0,so that

A (x. y) — C~tx) .v~ + C4 (x) .v ’ + (‘~ (v )  v 3 + (‘,(x ) y 2 + C,(x )  .~ + C0(x) .  (4 3)

From equations (38) to (42) we obtain

K (.~~. — — 
.
~ ( 4 + 12 t’) + ~ 

— - ~. ‘ — 
.‘ U.’ (44)

8.v -’ + 12 4.x 3 + 6 2(4.~ + 6)
so that the profile function is found from equation (17) to be

q (~
) — 

24x(2.v ’ ::J.!~ .~~ o. (451

10
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As ~ — q(.v ) — l/~ . which is the same asymptotic behavior as the profile function which

was derived from the second-order Butterworth approximatiofl ’~. There is a “potential well”

closer to ~ 
— 0 with one “bound state ” or “characteristic mode” with the value q, — — 1,

corresponding to the pole on the positive imaginary tixis at K , — ~ ,. There is a simple check

on the number M ot bound states which was obtained by Harg,,,an,, ’ for direct quantum scatter-

ing theory:

~ f~ i . i ~ 
(
~

) I1L~ ~ P.1 + 1. (46)

where q (.v ) is the portion ot the profile function where q ( ~
) s

~ 0. After integrating by parts

between the limits 0~ ~ ~ ‘~ ‘3/2 . we can evaluate this integral to obtain Psi ~ 3— 2 In L so

that Al — I. (Positive and negative values of the profile function can be interpreted physically

in terms of the scattering of vertically polarized waves by an inhomogeneous dielectric region,

discussed in Section 3.4 .)

3.3 Two-pole Reflection (‘oefllcient with One 1cm

A reflection coefficient with a zero a K~~~O is shown in Figure 6.4. r(K) also has the

second-order Butterworth ~~~~~

K
—

~ — I

The reconstruction method yields the profile function,

‘l\ ( ~~~
— - 

~ 
) 0.

where

— 2 — ~~~r ( (4 — v ~~
’)5in’~~~% + ~J~ cos ~/~~j

• 
4’ ’ 4—3\/ ~~.

— -

~~~~~

=

~~

- —a—- ~~ - .~ + ~J~cos ~/~v

ii 
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qp (x)  — 
[ ( .~

I
~~ +1) (.

~~~~~~~~~~~~~~~~~~~~ 
2~~sin..uivJ .

Since r (xl i ~~~~,, —0, there is a potential well for small .v, however there are no bound states.

3,4 Vert ical Polarization

If the electromagnetic field is vertically polarized so that 1? — a, H,, then the limehar.-

monic amplitude vU. x) satisfies the differential equation

d 
( i  

dv (k .x ) J + ( A � k 2 s1n2
9 J v ( k x ) _ o  (47)

This can be expressed in a form similar to Eq. (2) by using the local wave impedance W(x)

with the following transformation of variables

W(x)  —

di (k .x) — v(k ,x) ‘sfW(x ~
)

~ 
— 

( W’(x) 
2 

— 
I V ’(x)

q x 2 W (x )  2 W ( x )

Some values of W ’(x ) / ( 2  K ’/ (x ) )  can cause a negative q ( x) .  W ( x )  can be found from Eq.

(30) and

W(x)  — 
W(0) (48)

(l+ F(x.0)1

where F (x.  0) — F(x , s) I ~~ and W(0) — W(x)  I ~—o

4. Discuss ion

The general form of the profile function q (x) is related to the pole-zero configuration of

the reflection coefficient r(K). The continuous spectrum is represented by poles in the lower

half-plane. The “smoothness” of q (x)  is det ermined by the number of poles and zeroes of

12
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r ( ) : If ,‘(x ) hu M poles and no zeroes , the n the M-2 derivativ e of q (x ) , and all lower

derivatives will be Continuous at x — 0. This means that if ‘(K) has one pole, the correspond-
ing q(x) will be discontinuous at x — 0. If ‘(K) has two poles, then q (x)  will be finite at .v —

0 but will have an infinite slope. If r(~ ) has three poles, both q(x)  and g ’(x) are co rn inuous
at x — 0 but th ere is an “angle discont inuity”. If r(K) has a zero *t K — 0, then q(x) will have
a potential well since waves with small energy penetrate the medium and are not reflected
immediately. If a discrete spectrum is present , it can be represented by a pole on the positive
imaginary axis.

The examples shown in Figure 6 illustrate these properties:

1. The one-pole r(~c) is a classic example ” and leads to the 6-function q(x) shown in Fig.
6.1.

2. The two-pole case, shown in Fig. 6.2~ was previously analyzed ’° for the second-order
Buuerworth approximation. As x—. 

~~~~, q(x) — L/x
1.

3. The three-pole example ’, shown in Fig. 6.3 . has the asymptotic behavior q(.v ) e ~~~ It
is interesting to note that as the third-pole K~ — —Ia —“ — b a , the resultant q (x )  behaves

asymptotically like a q(x) obtained from a general Iwo-pole r(K) .

4. II r ( K)  has a continuous spectrum with one zero at K—0, as shown in Figure 6.4, then an
oscillatory profile function is obtained. However there is no discrete spectrum or “bound

state,” even though q(x)  does become negative.

5. If a discrete spectrum is allowed, ‘(K) will have a pole on the positive imaginary axis , as ’

shown in Fig. 6.5, the symmetric poles are taken here to lie on the unit circle. The resul-

13
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(ant profile function has a “potential well”. There will be a “bound state ” or “characteristic

mode “ corresponding to the pole as the positive imaginary axis. The asymptotic behavior

as .~ 
— oo resembles that corresponding to the two-pole Butterwo rth case.
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List .f Symbols

x, y, z — Cartesian space coordinates

— time variable

c — velocity of light if free space

— angular frequency for exp (iw :)  time variation

E. R — electromagnetic field vectors

• E,, H,, — y-component of E. ii
— E, in region x .~~ 0

a. — unit vector in y-direction

— incidence angle

9 — scattering angle

* — wave number in free space

K — wave number along x-direction or spectral variable

r — reflection coefficient

T — transmission coefficient

a — permittivity of region .v ) 0

— permittivity of free space

q — profile function

8 — Dirac delta function

s — 1K , complex variable of integration

— variable of integration

R — reflected transient field or spectral function

K — transformation kernel function
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u — Fourier t ransform of E~
v — Fourier transform of H,.

— scalar amplitude related to v

W — local wave impedance

M — number of bound states

p — differential operator

I — function of p

— “entire” electric field

DC ,, — poles of r ( K)  in complex K-plane

— residues of r (.c ) are K ,,

c, — RC(K 1)

c2 — Im(K ,)

a — Im(K 3)

C — c ? + c?

A, F. G, N, K,, — auxiliary functions defined by Eqs. (2 1) - (25 )

g. 8,, n,, d,, r , — auxiliary functions defined by Eqs. (26)-(35)
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Fig. 4. — Reflected energy density. r( ,c ~~
2 . for Example 3.1.
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Fig. ~ — Pro~ Ie func t ion q~~. ) for Ex ample 3 1
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r (K) -a. a q ( x )

(NOT TO SCALE)

8 (x )

2 
_ _ _ _ _

•-~~~~~ b~

C)
Fig. 6 — Compa rison of pole configuration of fi ve examples of r( K) and their

corresponding profile (wtcirOns q t r )  The esamp les are lis ted in Section 4.
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